Oleochemicals in the Biorefinery: Glycerol and Co-Products from Biodiesel Production

2008 Transition to a Bioeconomy Integration of Agricultural and Energy Systems

> Westin Atlanta Airport Atlanta, GA February 12 - 13, 2008

Joseph J. Bozell University of Tennessee Biomass Chemistry Laboratory Forest Products Center Knoxville, TN 37996

• The oleochemical operating unit - a component of the biorefinery

• *Biodiesel* - what are the challenges and the possible impact?

• Glycerol - what do we do with it?

The Oleochemical Operating Unit

2007: 450-500 x10⁶ gal biodiesel produced (NBB) 1998: 101x10⁶ tonnes of fats and oils produced worldwide 14x10⁶ tonnes used by chemical industry; remainder for food uses (*Pure Appl. Chem.*; 2000, *72*, 1255)

Feedstock Supply Potential for Biodiesel

- Total available ~ 10% of U. S. diesel demand. (recent report: soy oil ~ 6% of diesel demand; *Proc. Nat. Acad. Sci.* 2006, 103, 11206)
- •Competition with food impacts supply
- •An impact can be made. Is it a significant impact?

Feedstock	Total US Production MM gal/yr 2001	Supply for Biodiesel MM gal/y 2001
Soy	2,432	283
Corn	331	115
Canola	87	0
Sunflower	113	65
Safflower	11	0
Peanut	29	0
Cottonseed	131	18
Tall Oils	171	0
Lard	137	21
Edible Tallow	240	170
Inedible Tallow	487	258
Yellow Grease	412	167
Other Greases	52	52
Trap Greases	495	495
Total	5.128	1.644

Source: Tyson, Shaine K., August 2002. Draft Report "Feedstocks for Biodiesel Production", Submitted to OBP; Original data source: USDA, October 2001, *Oil Crops Situation and Outlook Yearbook*; USDA, *Agricultural Statistics*, 2001; U.S. Census Aug 8, 2001; Render, April 2002.

Biodiesel Production Costs

- Largest cost component is feedstock (7.7 lb oil/gal biodiesel)
- Coproduct credits have room to contribute
- Needed coproduct value for competitive fuel is challenging

Source: K. S. Tyson, NREL

Coproducts Drive Cost Reduction

Impact of Coproducts on Biodiesel Cost

The Glycerol Potential

- Current market: 650 700x10³ tonnes/yr
- Glycerol is moving from the position of "additive" to that of starting material (platform)
- Capture of 5% of diesel market will lead to availability of 1x10⁶ tonnes additional glycerol
- Glycerol can serve as a model for sugar technology development
- *But:* Glycerol may be the limiting factor for the oleochemical operating unit

Glycerol Product Family Possibilities

Glycerol Fuel Applications

- Fischer-Tropsch synfuels
- Gas turbines
- Hydrogen for fuel cells
- Transportation fuels

Glycerol Reduction Processes

- Antifreeze
- Biobased and conventional plastics
- De-icers
- Paints and coatings

Glycerol Oxidation Processes

- New chemical intermediates and structures
- Specialty chemicals

Glycerol Dehydration Processes

- High volume chemical intermediates
- Plastics, polymers
- Coatings
- Adsorbents

Biochemical Conversions of Glycerol

- High volume commodities
- New polymers, textiles

Economic Considerations

	Cost/lb (2003)	Cost /Ib (current)	% change, 2003 - 2007	∆ propylene	∆ purified glycerol (% difference from propylene)	∆ crude glycerol (% difference from propylene)
Propylene ^a	0.22	0.44	+ 100			
Crude glycerine ^b	0.24	0.05	- 80			
Purified glycerol ^c	0.72	0.25	- 65			
Acrolein/acrylic acid ^a		1.17		0.73	0.92 (+26%)	1.12 (+53%)
Epichlorohydrin ^a		0.97		0.54	0.72 (+33%)	0.92 (+70%)
Propylene glycol ^a		1.05 ^d		0.61	0.80 (+29%)	1.00 (+ 61%)

a) Chemical Economics Handbook;

b) DOE Top 10 Report on Chemicals from Biomass;

c) Curr. Opin. Biotech. 2007, 18, 213, oleochemical industry representatives;

d) list price for industrial grade propylene glycol; USP grade is 0.71/lb

Economic Considerations

	Cost/lb (2003)	Cost /Ib (current)	% change, 2003 - 2007	∆ propylene	∆ purified glycerol (% difference from propylene)	∆ crude glycerol (% difference from propylene)
Propylene ^a	0.22	0.44	+ 100			
Crude glycerine ^b	0.24	0.05	- 80			
Purified glycerol ^c	0.72	0.25	- 65			
Acrolein/acrylic acid ^a		1.17		0.73	0.92 (+26%)	1.12 (+53%)
Epichlorohydrin ^a		0.97		0.54	0.72 (+33%)	0.92 (+70%)
Propylene glycol ^a		1.05 ^d		0.61	0.80 (+29%)	1.00 (+ 61%)

a) Chemical Economics Handbook;

b) DOE Top 10 Report on Chemicals from Biomass;

c) Curr. Opin. Biotech. 2007, 18, 213, oleochemical industry representatives;

d) list price for industrial grade propylene glycol; USP grade is 0.71/lb

Economic Considerations

	Cost/lb (2003)	Cost /Ib (current)	% change, 2003 - 2007	∆ propylene	∆ purified glycerol (% difference from propylene)	∆ crude glycerol (% difference from propylene)
Propylene ^a	0.22	0.44	+ 100			
Crude glycerine ^b	0.24	0.05	- 80			
Purified glycerol ^c	0.72	0.25	- 65			
Acrolein/acrylic acid ^a		1.17		0.73	0.92 (+26%)	1.12 (+53%)
Epichlorohydrin ^a		0.97		0.54	0.72 (+33%)	0.92 (+70%)
Propylene glycol ^a		1.05 ^d		0.61	0.80 (+29%)	1.00 (+ 61%)

a) Chemical Economics Handbook;

b) DOE Top 10 Report on Chemicals from Biomass;

c) Curr. Opin. Biotech. 2007, 18, 213, oleochemical industry representatives;

d) list price for industrial grade propylene glycol; USP grade is 0.71/lb

Derivative Production Potential

Chemical	Potential available (lb)	Current market (Ib)		
Glycerol ^a	4.1 x 10 ⁹	288 x 10 ⁶ (2004)		
Propylene glycol	3.4 x 10 ⁹	1.17 x 10 ⁹		
Acrolein/acrylic acid	2.5 x 10 ⁹ (acrolein) 3.2 x 10 ⁹ (acrylic acid)	2.6 x 10 ⁹ (acrylic acid)		
Epichlorohydrin	4.1 x 10 ⁹	0.78 x 10 ⁹		

a) Available glycerol calculated assuming a biodiesel industry producing 5 x 10^9 gal/yr

Summary

- Oleochemicals are a key component of the integrated biorefinery concept
- Oleochemicals could be the best initial bridge between the biorefinery and the petrochemical refinery
- Integrating biodiesel production with production of chemicals provides an economically attractive process approach
- New uses for glycerol will help drive greater biodiesel production

An Integrated Oleochemical Operating Unit

Research Interest in Biodiesel and Glycerol is Booming

Number of WOS citations: biodies*

Biodiesel citations

Number of WOS citations - (glycerin* OR glycerol*) AND biodies*

Cold Flow Limits Use of Fats and Greases

Oil Prices and Yield

Market Scenarios

Consumption of New Glycerol Supplies

- Existing markets?
 - New glycerol from "small" biodiesel effort in Europe consumed by existing market
 - No blockbuster markets for glycerol; typical for exhibited price point
 - -Growing competition from SE Asia: est. 200x10³ tonnes of capacity

Consumption of New Glycerol Supplies

- Recovery of previous markets, capture of new market segments
 - Example: alkyd resins, market size 1691 x10⁶ lb in 2000

Polyol	USD / ton
Glycerol	1200 - 1600
Trimethylol propane	1,278
Pentaerythritol	1,278
Propylene glycol	1,000
Ethylene glycol	667
Sorbitol (70 %)	400

Source: Claude, S. Fett/Lipid 1999, 101, 101

US Consumption of Diesel, 1998-2006

US distillate consumption 1998-2006

Source: http://www.eia.doe.gov/oil_gas/petroleum/info_glance/distillate.html